横力弯曲的梁横截面上既有弯矩又有剪力,所以横截面上既有正应力又有切应力。下面,讨论几种常见截面梁的弯曲试验时的切应力。
矩形截面
从发生横力弯曲的梁上截取长度为dx的微段,该段梁上没有载荷作用,微段两侧截面上的剪力相等,但方向相反。右侧截面上的弯矩相对左侧截面有增量,因为弯矩不等,因而两截面上的正应力也不相同。
对于狭长矩形截面,由于梁的侧面上无切应力,根据切应力互等定理,截面上两侧边各点处的切应力与边界相切,即与边界平行,梁发生对称弯曲,对称轴y轴上的切应力一定沿着y方向,在狭长截面上切应力沿宽度方向变化不大。
于是,关于横截面上切应力的分布规律,作以下假设:
横截面上各点的切应力的方向都平行于剪力;
切应力沿截面宽度均匀分布,即与中性轴平行的横线上各点的切应力大小相等。
截面高宽比大于2的情况下,以上述假定为基础得到的解与弹性理论的精确解相比,有足够的精确度。
根据切应力互等定理,横截面垂直的纵向截面上应存在与横截面上大小相等的切应力。沿矩中性轴距离y 的纵向面把微段截开,取纵向面下侧微元,受力如图所示。
左侧截面上正应力的合力为
右侧截面上正应力的合力为
显然这两个合力大小不等,纵向截面上必存在一个沿轴向的力使微段保持平衡,这个力为切应力的合力,这也证明了纵向截面上存在切应力,由于dx是小量,则设纵向面的切应力均匀分布
根据平衡条件
即
其中
由切应力互等定理及剪力与弯矩之间的微分关系
可得
其中:b为截面上矩中性轴为y的横线的宽度,对于矩形截面为常数;Iz为整个横截面对中性轴的惯性矩;Sz*为横截面上矩中性轴为y的横线以外部分的面积对中性轴的静矩;Fs为横截面上的剪力。
其中
代入切应力计算公式
切应力沿截面高度为抛物线分布,当y=0时,即中性轴处有截面上的最大切应力
可见角应变大小沿截面高度也为抛物线分布,此时横力弯曲时横截面翘曲形状如下图,验证了横力弯曲变形不满足平面假设。
剪力不变的横力弯曲,相邻横截面上的切应力相同,翘曲程度也相同,纵向纤维的长度不因截面翘曲而改变,因此不会引起附加的正应力。若剪力随截面位置而变化,相邻两截面上的翘曲程度不同,在截面上引起附加的正应力。
对于其他形状的对称截面,均可按上述的推导方法,求得切应力的近似解。对于矩形截面,在应力计算公式中截面宽度b为常数,而中性轴一侧的半个横截面面积对中性轴的静矩最大,所以中性轴上各点处的切应力为最大。
对于其他形状的对称截面,横截面上的最大切应力通常也均发生在中性轴上的各点处,只有宽度在中性轴处显著增大的截面(如十字形截面)或某些变宽度的截面(如等腰三角形截面)等除外。因此,下面对于工字形、环形和圆形截面梁,主要讨论其中性轴上各点处的最大切应力。
由切应力互等定理,在圆截面边缘上各点处切应力的方向与圆周相切。而在对称轴的各点处,由对称性其切应力必沿y方向。因此,切应力分布规律可以假设为:
沿距中性轴为y 的宽度上各点处的切应力均汇交于对称轴一点;
沿宽度各点处切应力沿y 方向的分量相等。
在提高截面的抗弯截面系数的同时,还希望用较少的材料,达到较好的经济性。因此,一般用抗弯截面系数与截面面积的比值衡量截面设计的合理性。在相同截面面积的情况下,矩形截面(高度大于宽度)比圆形截面合理,而工字形截面或箱形截面比矩形截面合理。所以,为了充分利用材料,应尽可能地把材料放置到离中性轴较远处。
在讨论截面的合理形状时,还应考虑到材料的特性。对抗拉和抗压强度相同的材料(如低碳钢),宜采用对中性轴对称的截面,如圆形、矩形、工字形、箱形等。这样可使截面上、下边缘处的最大拉应力和最大压应力数值相等。
对抗拉和抗压强度不相等的材料(如铸铁、水泥等),宜采用中性轴偏向于受拉一侧的截面形状。
等强度梁的概念
前面讨论的梁都是等截面的,抗弯截面系数为常数,但通常情况下梁的各截面弯矩是随截面的位置而变化的。等直梁的截面设计要根据最大弯矩处进行,其最大应力接近许用应力,其余各截面上弯矩较小,应力也就较小,材料没有充分利用。为了节约材料,减轻自重,可改变截面尺寸,使抗弯截面系数随弯矩而变化。在弯矩较大处采用较大截面,而在弯矩较小处采用较小截面。这种截面沿轴线变化的梁,称为变截面梁。
如变截面梁各横截面上的最大正应力都相等,且都等于许用应力,称为等强度梁。
以上就是江苏容大为大家总结的弯曲试验的切应力、梁的强度条件,如果您有更多想要了解的地方,欢迎电话咨询:17766358885,我们会有专业的客服人员为您服务,期待您的来电!